The Importance of responsible AI in our fast-paced world

AI

Matthew Nolan, Senior Director of Product Marketing at Pegasystems, explains the four criteria in developing AI responsibly.

Artificial intelligence (AI) drives practically everything we do online today. Predictive algorithms recommend products and services, diagnose our health, translate our words, and make calculations based on our past behavior. They even determine what news we see and what content shows up in our social media feeds (for better or for worse). What separates AI from other decisioning technology is that it “learns.” And as AI becomes even more embedded in our lives, it will continue to become more autonomous, ultimately acting without human supervision.

As the need for AI-driven technologies increases, so does the pressure on organizations to stay competitive and keep pace. The “AI Arms Race” has never been so great – not just who can build the most sophisticated algorithms, it’s a battle for control of our attention and to gain influence. As the saying goes, “with great power comes great responsibility,” but outside of the U.S. and Europe, there are far fewer regulations on collection and data usage to protect people’s privacy. The question for many organizations becomes “how do we make sure our AI models reflect our cultural and ethical values while staying ahead of the competition?” With businesses being forced to move AI faster – and perhaps faster than they are ready to – that speed comes at a cost.

Four tenants of responsible AI


This year has brought the fight for social justice to the forefront of the news cycle. With a spotlight on prejudice and discrimination, organizations driving AI’s usage and development absolutely must do what they can to eliminate bias, explain decisions made by their technology, and take accountability if/when their AI goes rogue. If we truly want to live up to the promise of customer centricity – not just use it as a buzzword – we need to commit to developing that AI responsibly, not just rapidly.

Responsible AI has four critical tenants:


Fairness.

Organizations need to be proactive and vigilant about policing their AI to ensure it’s fair to everyone. This means building truly unbiased AI data models, proactively monitoring them, and analyzing their outputs. Is the AI treating all genders, ethnicities, age groups, zip codes, incomes, religious groups, etc. the same way?


Fair AI usually isn’t top of mind until a company makes a mistake – and the results can be damaging. When it comes to bias, in some cases, AI has to be “better” than the society we live in. For instance, Northpointe’s Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) AI tool was found to be discriminating against African-American offenders – declaring that they were twice as likely to re-offend than white criminals. The root of the problem was that the decisions were based on skewed data in the justice system that was inherently biased and perpetuated an unfair stereotype.


Transparency.

Companies need to show how AI arrived at a decision, especially when it comes to highly regulated industries like financial services and insurance. Late last year, a high-profile company was under attack for its credit card offerings, because it supposedly offered higher credit limits for men as compared to women with similar financial circumstances and backgrounds. Because the chosen AI model wasn’t transparent about how it made its decisions – a condition known as “black box” or “opaque” AI – the company appeared to be biased against women.

Companies must be proactive about certifying their algorithms, clearly communicating their policies on bias, and providing a clear explanation of why decisions were made, especially when there’s a problem. They should also consider using transparent and explainable algorithms for regulated/higher-risk use-cases like credit approvals to make it easier for frontline employees to understand and explain their decisions to customers.


Empathetic.

The need for companies to show empathy for their customers has never been greater. Empathy in AI means that the decisions it makes are relevant, helpful, and put the customers’ needs first. It means looking at a customer’s complete context to understand exactly what they need “right now” in the moment.  It’s knowing when to sell – but it’s just as important to know when to serve, retain, and just stay quiet.

For instance, Commonwealth Bank of Australia’s “Benefits Finder” service prompted 600,000 of its customers with information about the cash value of expiring credit card points and how to redeem them. While most companies let points expire so they don’t have to incur the cost, CBA saw proactive communication as a more empathetic way to serve their customers.

Turns out, empathy is good for business too. According to a recent Total Economic Impact Study from Forrester, using AI to develop a strong 1:1 engagement program can drive significant incremental revenue – almost $700M in three years – while minimizing more than $500M in customer churn losses.


Robust.

Remember Tay? The opaque Twitter bot that went off the rails a few years ago? People were encouraged to interact with it and within 24 hours, the model became misogynistic and racist because of the data it was ingesting from Twitter conversations. It became a huge joke for some, but it was a turning point for the market – especially those organizations that might be trying to move too quickly. They realized they needed a more robust AI, or one with built-in protections so it couldn’t be so easily influenced. They also needed to take the time to establish AI rules and guardrails that governed what types of actions were truly “suitable” in given situations.

Most of us don’t think about algorithms until they make mistakes – but organizations need to proactively prevent discrimination by policing themselves and making decisions based on what’s most suitable for the customer.

Fairness, transparency, empathy, and robustness should be the four key pillars of any company’s responsible AI policy. While companies can’t afford to slow down, we need to coalesce around a foundational set of principles that respect the customer and provide a sustainable (and hopefully profitable) vision for long-term success. That will benefit everyone. As it’s not only the right thing to do, it will ultimately protect and bolster our customer relationships, our brands, and our bottom lines, no matter what crisis we are faced with next.


Matthew Nolan

Matt Nolan is a senior director of product marketing at Pegasystems. Matt has worked in the MarTech sector for the last 20 years, serving in a variety of senior product management, marketing, and analytics roles.

How E-commerce Marketers Can Win Black Friday

Sue Azari • 11th November 2024

As new global eCommerce players expand their influence across both European and US markets, traditional brands are navigating a rapidly shifting landscape. These fast-growing Asian platforms have gained traction by offering ultra-low prices, rapid product turnarounds, heavy investment in paid user acquisition, and leveraging viral social media trends to create demand almost in real-time. This...

Why microgrids are big news

Craig Tropea • 31st October 2024

As the world continues its march towards a greener future, businesses, communities, and individuals alike are all increasingly turning towards renewable energy sources to power their operations. What is most interesting, though, is how many of them are taking the pro-active position of researching, selecting, and implementing their preferred solutions without the assistance of traditional...

Is automation the silver bullet for customer retention?

Carter Busse • 22nd October 2024

CX innovation has accelerated rapidly since 2020, as business and consumer expectations evolved dramatically during the Covid-19 pandemic. Now, finding the best way to engage and respond to customers has become a top business priority and a key business challenge. Not only do customers expect the highest standard, but companies are prioritising superb CX to...

Automated Testing Tools and Their Impact on Software Quality

Natalia Yanchii • 09th October 2024

Test automation refers to using specialized software tools and frameworks to automate the execution of test cases, thereby reducing the time and effort required for manual testing. This approach ensures that automation tests run quickly and consistently, allowing development teams to identify and resolve defects more effectively. Test automation provides greater accuracy by eliminating human...

Custom Software Development

Natalia Yanchii • 04th October 2024

There is a wide performance gap between industry-leading companies and other market players. What helps these top businesses outperform their competitors? McKinsey & Company researchers are confident that these are digital technologies and custom software solutions. Nearly 70% of the top performers develop their proprietary products to differentiate themselves from competitors and drive growth. As...

The Impact of Test Automation on Software Quality

Natalia Yanchii • 04th October 2024

Software systems have become highly complex now, with multiple interconnected components, diverse user interfaces, and business logic. To ensure quality, QA engineers thoroughly test these systems through either automated or manual testing. At Testlum, we met many software development teams who were pressured to deliver new features and updates at a faster pace. The manual...