Could deep learning come to an end?

Credit: HackerNoon

Deep learning is one of the most exciting research fields in technology and the basis of so much AI: could its days really be numbered?

In 2000, Igor Aizenberg introduced deep learning in connection with artificial neural networks (ANN) to determine Boolean threshold neurons for reinforcement learning. It was a revelation. To many, it’s still the most exciting thing in artificial intelligence.

Deep learning was born in the embers of Y2K and has gone on to shape the 21st Century. Automatic translations, autonomous vehicles and customer experience are all indebted to this concept: the idea that if tech can teach itself, we as a species can simply step back and let the machines do the hard work.

Some believe that deep learning is the last true invention of the human race. Others believe it’s a matter of time before robots rise up and destroy us. We assume that AI will outlive us: what if deep learning has a lifespan, though?

MIT Technology Review looked into the history of AI, analysing 16,625 papers to chart trends and mentions of various terms to track exactly what’s risen in popularity and when. Their conclusion was intriguing: deep learning could well be coming to an end.

The emergence of the deep learning era

The terms “artificial intelligence”, “machine learning” and “deep learning” are often used as interchangeable buzzwords for any kind of computing project that requires algorithms of some kind.

This is, of course, misleading. This chart is a common visual explanation of how deep learning is merely a subsection of machine learning, and machine learning a subsection of AI.

Deep learning is but an era of artificial intelligence. MIT used the largest open-source databases of scientific papers, known as the arXiv, and tracked words mentioned to discover how AI has evolved.   

These findings found three major trends. Firstly, there was a gradual shift towards machine learning that begun on the cusp of the 21st Century. Secondly, neural networks began to pick up speed around a decade later, just as the likes of Amazon and Apple were incorporating AI in their products. Reinforcement learning has been the third big wave of the last few years.


Neural networks weren’t always this popular. They peaked in the 1960s and dipped below the surface, returning briefly in the 80s and then again around 20 years later.


MIT found a transition away from knowledge-based systems (KBS) – computer programs that reason and use a knowledge base to solve complex problems – by the 21st Century. It was replaced by machine learning, which comes up with a model just from the available training data and uses that model to infer conclusions from new observations, as opposed to a KBS’s method of arriving at a conclusion based on the facts or knowledge and the “if-then” rules it has been fed.

What comes next?

There is more than one way to train a machine.

Supervised learning is the most popular form of machine learning. Decisions made in this method don’t affect what an AI sees in the future. This is the principle of image recognition: all you need is the knowledge of what a cat looks like, to recognise a cat.

Reinforcement learning mimics how we learn though: it is a sequential way of learning, meaning that that the next input of the AI depends on a decision made with the current input. Think of it more like a board game: you can play chess by learning all the rules but you truly progress as a player by earning experience.

In October 2015, DeepMind’s AlphaGo trained with reinforcement learning managed to defeat the world champion in the ancient game of Go by learning from experience. This had a huge impact on reinforcement learning. Since then, it has been picking up traction, just as deep learning experienced its boom after Geoffrey Hinton made image recognition breakthroughs towards the end of the 2000s.

[forminator_poll id=”2995″]

AI has genre shifts like music. Just as synth-pop dominated the 80s, replaced by the grunge and Britpop of the 90s, artificial intelligence experiences the same waves of popularity. The 1980s saw knowledge-based systems dominate, replaced by Bayesian networks the following decade; support vector machines were in favour in the 2000s, with neural networks becoming more popular this decade.

Neural networks weren’t always this popular. They peaked in the 1960s and dipped below the surface, returning briefly in the 80s and then again around 20 years later. There’s no reason that the 2020s won’t bring about new changes to the way that we use AI. There are competing ideas so far about the next revolution to take hold; whatever it is could see deep learning leave the spotlight for a while.

Luke Conrad

Technology & Marketing Enthusiast

The rise of loyalty apps

Sue Azari • 17th January 2025

Increased choice and a consumer more price sensitive than ever before, has made customers far more likely to shop around for the best deals. Price is now the number one factor in brand consideration. In an effort to bag a bargain, loyalty programs have become increasingly popular with consumers, with nine out of ten in...

Rocket launch challenges Elon Musk’s space dominance

Professor Sultan Mahmud • 16th January 2025

Amazon founder Jeff Bezos’s space company has blasted its first rocket into orbit in a bid to challenge the dominance of Elon Musk’s SpaceX. The New Glenn rocket launched from Cape Canaveral Space Force Station in Florida at 02:02 local time (07:02 GMT). It firmly pits the world’s two richest men against each other in...

Giesecke+Devrient launches new Smart Label at CES 2025

Giesecke Devrient • 06th January 2025

G+D has today launched the G+D Smart Label, its innovative tracking solution that transforms any package into an IoT device. Ultra-thin and only slightly larger than a credit card, the new Smart Label proposition has been jointly developed by G+D in conjunction with its hardware partner, Sensos to enable cost-effective, accurate location tracking for a...

Choose an AI solution to transform beyond technology

Kit Cox • 09th December 2024

The first step is knowing exactly what your business wants to achieve with AI; think faster, smarter and more efficient. Once you know what you are working towards, you can start looking for a solution that can help you make it a reality. AI integration can feel like a daunting task at the beginning, so...

A Roadmap to Security and Privacy Compliance

John Lynch Director of Kiteworks • 04th December 2024

Only by understanding the current regulatory environment and implementing robust data protection measures, can organisations enhance their security posture, ensure compliance, and build resilience against the latest cyber threats. This article provides a comprehensive roadmap of how to do it.

Data-Sharing Done Right: Finding the Best Business Approach

Bart Koek • 20th November 2024

To ensure data is not only available, but also accessible to those that need it, businesses recognise that it is vital to focus on collecting, sorting and governing all the data in their organisation. But what happens when data also needs to be accessed and shared across the business? That is where organisations discover a...

Nova: The Ultimate AI-Powered Martech Solution for Boosting Sales, Marketing...

Erin Lanahan • 19th November 2024

Discover how Nova, the AI-powered engine behind Launched, revolutionises Martech by automating sales and marketing tasks, enhancing personalisation, and delivering unmatched ROI. With advanced intent data integration, revenue attribution, and real-time insights, Nova empowers businesses to scale, streamline operations, and outperform competitors like 6Sense and 11x.ai. Experience the future of Martech with Nova’s transformative AI...